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Abstract

We give a theorem about intersection of reductions of a principal
fiber bundle. As an application, we show that the intersections of confor-
mal and volume structures, considered as G-structures of first order, are
precisely the (semi)Riemannian structures. Also, we can apply it to the
intersection of both, a projective structure and the first prolongation of a
volume structure, considered as G-structures of second order. A possible
application for a better understanding of the General Relativity theory
is pointed out.

1 Introduction

The most of differential geometrical structures commonly used can be
understood as G-structures of first or second order. A G-structure of
first order (or, simply, a G-structure) on a manifold M is a reduced
bundle of the linear frame bundle LM with structure group a subgroup
G of GL(n,R). Examples of G—structures that we are interested in are
(semi)Riemannian, conformal and volume structures. A G-structure of
second order is a reduced bundle of the second order frame bundle (M)
with structure group a subgroup G of G?(n). Examples of it are symmet-
ric linear connections, projective structures and the first prglongatlons
of G-structures of first order which admit symmetric connections.



In this communication we state a result about intersection of reduc-
tions of principal fiber bundles, which has an immediate lecture in terms
of G—structures of first or second order. Two applications of this result
are given. The first shows that (semi)Riemannian structures belonging
to a given conformal structure on a manifold are in bijective COTTespon-
dence with the volume structures on the manifold (for us, volume struc-
ture refers to a little generalization of volume element, which does not
need the orientability of the manifold to be defined). A second appli-
cation shows that a given volume structure selects a symmetric linear
connection belonging to a given projective structure.

The General Relativity theory maintains that the space-time geom-
etry is given by a Lorentzian metric structure. It is well understood
([3]) that the physical phenomenon of light propagation determines a
Lorentzian conformal structure. Then, the first application suggests us
to investigate in the physical motivation that would conduce to the intro-
duction of a volume structure as an ingredient of the space-time geometry.

2 A theorem on intersection of reduced bundles

We will understand a manifold M as a C®, second countable, manifold
of dimension n. Let G be a Lie group. Let H be a closed subgroup of
G. Let u™": G x (G/H) — G/H, °*(a,bH) = " (bH) = abH, be the
natural left action of G on the homogeneous manifold G /H.

It is well known ([7, Ch.I, Prop.5.6]) the bijective correspondence be-
tween the H-reductions of a principal bundle, P (M, G), and the sections
of its associated bundle which corresponds to the left action ot We
already know that the sections of an associated bundle are in bijective
correspondence with the equivariant functions of the principal bundle
into the typical fibre of the associated bundle, G /H in our case. Then we
can prove the following result. This result can be obtained as a conse-
cuence of the work of Bernard ([2, Sec. 1.6]) but we prefer this approach
technically more clear and perfectly adapted to the applications which
we are interested in.

Theorem 2.1 Let H, K be two closed subgroups of a Lie group G such
that G = HK (ie. YVa € G, 3b € H, c € K: a = be). Let Q(M,H) and
R(M,K) be two reductions of a principal bundle P(M,G). Then, QN R
15 a reduced bundle of P, with HNK as structure group.

We give a previous lemma.




Lemma 2.2 Let H, K be two closed subgroups of a Lie group G such
that G = HK. Then, the application p: G/K — H/(HNK), p(aK) :=
b(HNK), with b~ta € K, is a diffeomorphism.

Proof. We prove that p is well defined: (1) Since G = HK, given a € G,
there exists b € H, Wlth b la € K and, if other b € H also verifies
b='a € K then, H 3 b~1h = (b~ )( a)’“l € K, which implies that
b(HNK) = b(H N K). (z) If aK = K and b-—la b~'a € K, with
b, b€ H, then H> b~1b = (b 'a)(a~ta)(b~ta)~! € K, which implies that
b(HNK) = b(HNK).

The application p is bijective: (7) It is clearly onto. (i) If a,4 € G
a,nd bHNK) = b(HNK), with b, b € H and b~la, b~'a € K, then
ata = (b"a) (b 1b)(b 'a) € K, which implies that oK = aK.

The application p~! maps b(H N K) into bK. This is an immersion

([5, Ch.II, Prop.4.4(a)]). But a bijective immersion is a diffeomorphism
(19, Ch.I, Exer.6]). Thus p is a diffeomorphism.

[]

Proof of the theorem. Let f: P — G /K be the function uG K—equrva—
riant corresponding to R(M,K). This means that, Ya € G, fo R,

GK

a . o f, with R” being the principal right action of G on P, and
"{K}) = R. We will prove that Q N R is a reduction of Q, Wthh
corresponds to the equivariant function po f|,: @ — H/(HNK):
(i) Let d € H and a € G be given, and let b € H be such that
b~'a € K. We obtain that

(pougta)(@K) = p(d~"aK) = p(d~"bK) = d'b(H N K)
H,HNK

— d"lp(aK) = (/Ld’_r o p)(aK).

Now, given ¢ € @, d € H, we obtain that

(poflooRy)@) = (pofoRy)g) = (poussof)lg) =

= (g 0po fl)(q)-
Thus the function po f|, is p ™ —equivariant.
(22) Given q € Q, if (pof| )(g) = HNK, then we have f(q ) = fl,(q)
(HNK) = K, which 1mphes that ¢ € R Thus (po f|,) *({HNK})
Q NR.

I



The theorem follows from the fact that a reduction, Q N R, of a
reduction @ of P is a reduction of P,

[]

As an (H N K)-reduction of P trivially extends to an H-reduction

and to a K-reduction of P, it is inmediate to prove the following result.

Corollary 2.3 Let H, K be two closed subgroups of a Lie group G such
that G = HK. Let P(M, G) be a principal bundle. The (HNK)-reductions
of P are precisely the intersections of H-reductions with K-reductions of
P.

3 Conformal and volume structures

Let G be a closed subgroup of GL(n,R). A G-structure of first order on
a manifold M is a G-reduction of the linear frame bundle LM,

Let 1 be the standard scalar product on R™ of a fixed signature. We
define the adjoint with respect to 7, al, of a € GL(n,R) as the unique
matrix such that 7(v, a’w) = n(av, w), Yo, w € R*. A conformal struc-
bure on M is a G-structure with G = CO(n) = {a € GL(n,R): ata =
kI, k> 0}, where I is the identity matrix in GL(n,R).

We define a volume structure on M as a G-structure with G =
SL*(n) = {a € GL(n,R): |det(a)| = 1}. Note that the existence of
volume structures does not depend on the orientability of M as in the
case of SL(n)-structures.

Theorem 3.1 The (semi) Riemannian structures on M are the intersec-
tions of conformal and volume structures on M.

Proof. It is clear that
CO(n) NSL*(n) = O(n) := {a € GL(n,R): a'a = I}.

Then, by the results of the previous section, we only need to prove that
GL(n,R) = CO(n)SL*(n). This follows from the fact that

a = (|det(a)|* 1) (|det(a)|~*"a), Va € GL(n,R) .
O

It is usual to define a conformal structure on M as the set lg] of metr.ic
tensors which are proportional by a positive factor to a given metric




tensor g on M, i.e. ¢ € [g] if and only if ¢’ = wg, with w: M — R*.
In this context, the CO(n)-structure P corresponding to [g] is composed
of all the linear frames | € LM, that considered as basis of the tangent
space 1., M in some point m € M, are orthonormal for some ¢’ € [g].

We can also understand a volume structure @) C LM as a selection,
for every point m € M, of a maximal set of basis of T,,, M with the same
unoriented volume, in the sense of linear algebra.

It is intuitively clear that if we intersect a conformal structure P
or, equivalently, [g] and a volume structure (), we are selecting, at each
point m € M, all the linear frames of P with the same unoriented volume
defined by (). But this procedure is equivalent to select the tensor metric
in [g] for which these linear frames are orthonormal. This metric is unique
because two tensor metrics, which are proportional and distinct in a point
m € M, have orthonormal basis in 7,, M with different volume.

4 G-structures of second order

The second order frame bundle F*(M) over a manifold M (see [6, Ch.4,
Sec.5] and see [8] for more details) is the principal fibre bundle, whose
fibre over each point m € M is the set of second order frames at m, 1i.e.
the set of 2—jets

{j3(x™'): z is a chart of M with z(m) = 0}.
Its structure group is the Lie group of 2-jets
G?(n) := {j5(#): ¢ is a local diffeomorphism of R" with ¢(0) = 0}.

Let G be a subgroup of G2(n). A G-structure of second order on M
is a G-reduction of F*(M).

Let S?(n) be the set of symmetric bilinear maps ¢: R* x R* — R",
considered as an additive Lie group. For each t € S*(n), we will write
th = u'(t(e;, ex)), with {e,. .., e,} and {u',...,u"} being the usual ba-
sis of R™ and R™, respectively. We set GL(n,R) ® S?*(n) for the semidi-
rect product of Lie groups, whose product law is given by (a,t)-(a’, t') =
(aa’,a’"*t(d’,a’) + t'). There is a canonical isomorphism (|8, Lem.1], see
also [1, Sec.4]) between G*(n) and GL(n,R) ® S*(n) given by the appli-
cation that maps j2(¢) into (Do), , Do\t D*¢l,). We will identify both
groups.

Examples of second order G-structures are the following:



e A symmetric linear connection of M can be identified ([6, Ch.4,
Prop.7.1]) as a G-structure of second order on M , with
G = GL(n,R) 2 {0}. It is composed of the 2—jets at 0 of the inverse
of all normal charts for the symmetric linear connection ([8]).

e A projective structure on M (16, Ch.4, Prop.7.1]) can be identified
with a G-structure of second order on M, with G = GL(n,R) 2 p,
where

p:={teS*n): tj-k = ;:pk + 04p;, for some (1, .., pn) € R™Y.

It is composed of the union of the G-structures of second order
corresponding to the projectively equivalent symmetric connections
which belong to the projective structure.

o We say that a G-structure of first order P is I-integrable if it ad-
mits a symmetric linear connection. Semiriemannian, conformal
and volume structures are examples of 1-integrable G-structures.
The first prolongation P, of an l-integrable G-structure P is ([8,
Ch.4, Sec.3.3]) unique and it can be identified with an H-structure
of second order with H = ¢ » g1, where g; denote the first pro-
longation of the Lie algebra g of G. We can see P, as the set of
2-jets at 0 of the inverse of all normal charts for all symmetric linear
connections that can be defined in P.

With the identifications introduced above, it can be shown the fol-
lowing result.

Theorem 4.1 The intersection of a projective structure on M and the
first prolongation of a volume structure on M ges a symmetric linear
connection of M.

Proof. Since the first prolongation of the Lie algebra sl(n) of SL*(n) is
sl(n)1 = {t € S*(n): t}, = 0}, then |

0 =ty = Ohpr + Oppn = (n + )py, Yk € {1,...,n),
thus ¢ = 0. This implies that

(GL(n,R) ® p) N (SL*(n) ® sl(n);) = SL*(n) » {0}.
Moreover, it is readily verified that

GL(n,R) ® $*(n) = (GL(n,R) ® p) - (SL*(n) ® sl(n),)




since (a,t) = (a,7) - (I,8), V(a,t) € GL(n,R) ® S*(n), where

i 1 11h 14h 1 ? 1 1 i 1h

Then, by Theorem 1, the intersection of a projective structure on M and
the first prolongation of a volume structure on M is a SL*(n) ® {0}~
structure of second order. This extends trivially to a GL(n,R) ® {0}~
structure of second order naturally included in the projective
structure.

]

In other words, this result says that a volume structure on M select
a connection of a projective class of linear symmetric connections.

5 Remarks on Lorentzian geometry and General
Relativity

Several geometrical structures can be derived from a (semi)Riemannian
metric: a conformal structure, a symmetric linear connection and a pro-
jective structure. The fact that a metric is the intersection of a conformal
structure and a volume structure allows the metric to be considered de-
rived from the conformal and volume structures. From my point of view,
the understanding of a metric structure as being composed by these two
pieces can be used to gain an insight into the meaning of the General
Relativity theory.

The phenomenon of light propagation is described geometrically by
a field of light cones which determines a Lorentzian conformal structure.
It would be very interesting to identify some substantial physical phe-
nomenon as being represented by a volume structure. In this way, two
physical principles will lead up to the Lorentzian metric proposed by the
Relativity theory.

Some authors ([3], [4]) have tried to give an axiomatic approach to
Ceneral Relativity by deriving the metric structure from the conformal
and projective structures. The projective structure would explain the
mouvement of free particles. But this approach is mathematically more
complicated because some extra conditions are needed to determine a
Lorentzian metric, except for a constant factor.
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